0040-4039(94)01955-X

Potassium Tetracarbonylhydridoferrate : **A Reagent for the Selective Reduction of Carbonyl Groups**

Jean-Jacques Brunet*, Remi Chauvin, Fadjai Kindela and Denis Neibecker

Laboratoire de Chimie de Coordination du CNRS, Unité N°8241, Université Paul Sabatier et Institut National Polytechnique, 205 route de Narbonne, 31077 Toulouse Cedex (France).

Abstract: KHFe(CO)₄ is an efficient reagent for the reduction of electron-deficient ketones (trifluoroacetophenone) and for the selective mono-reduction of the keto group of α -ketocarbonyl compounds such as beazil, methyl benzoylformate, N-methylisatine and methyl pyruvate. The phosphite substituted derivative K[HFe(CO)₃(P(OMe)₃]] is also an efficient reagent for the reduction of trifluoroacetophenone.

Key *words:* Potassium **tetracarbonylhydridoferrate:** ketones; **1,2-dicarbonyl compounds: selective rcductiou.**

Selective reduction of polycarbonyl compounds is a challenging research area in organic synthesis. Whereas hydride donors such as LiAlH₄, B₂H₆, or AlH₃ react with most sterically unhindered unsaturated functional groups (ketones, as well as esters, alkenes, alkynes, nitriles), $¹$ milder hydride donors can react</sup> selectively with electron-deficient keto groups.² These "activated" keto groups are found in such compounds as trifluoromethylketones, α -diketones, α -ketoesters or α -ketoamides, and have been often used as reference substrates for testing potentially enantioselective reducing agents. 3

For the past few years, we have been investigating the reactivity of tetracarbonylhydridoferrates $M^{+}[HFe(CO)_A]$ with the goal of developing useful applications in organic synthesis.^{4,5} These reagents are among the least hydridic of the anionic transition metal hydrides and have long been known to react with carbonyl groups only under particular conditions. Indeed, α , β -unsaturated carbonyl compounds are successfully reduced by NaHFe(CO)₄ to saturated carbonyl derivatives without being reduced further to alcohols.⁶ In fact, NaHFe(CO)₄ does not reduce aldehydes nor ketones.⁷ However, when associated with $[R_3NH]^+ [HFe(CO)_4]^$ does reduce aldehydes (as in the Reppe alcohol synthesis) $⁸$ under conditions where acetone is not reduced.⁹ The</sup> reduction of acetone by these reagents occurs only under severe conditions (100 °C, 100 bar carbon monoxide) using a catalyst generated *in situ* from Fe(CO)₅ and Et₃N and believed to be [Et₃NH]⁺[HFe(CO)₄]⁻.⁹ More recently, aliphatic aldehydes and ketones have been reduced by $[PPN]^+$ [HFe(CO)_{*A*}]⁻ ([PPN]⁺ = bis(triphenylphosphine)iminium) associated with CF_3CO_2H in THF. ¹⁰ We now wish to report that the potassium salt of [HFe(CO)₄]⁻ reacts under neutral, mild conditions with sufficiently activated carbonyl groups to yield the corresponding alcohols.

Preliminary experiments were carried out to compare the reactivity of $KHFe(CO)_A$ towards acetophenone with its reactivity towards trifluoroacetophenone (Table 1).¹¹ Trifluoroacetophenonone is reduced by KHFe(CO)₄ in either THF or methanol, the reaction being much faster and quantitative when conducted in MeOH. Analytically pure 1-phenyl-2,2,2-trifluoroethanol can be isolated from the reaction in 85% yield (run 7). In contrast, the stoichiometric reaction of acetophenone with $KHFe(CO)₄$ results in less than 5% conversion, with either THF or MeOH as solvent (runs 1-3). IR analysis of the reaction medium after 24h at 50°C indicates that KHFe(CO)₄ is unchanged; thus no enolisation of acetophenone is occurring. (This would generate the unstable $H_2Fe(CO)_4$, which decomposes readily.)¹² Under the same conditions, neither 2'-fluoroacetophenone nor 2',4'difluoroacetophenone is reduced. Thus, the difference in reactivity between trifluoroacetophenone and acetophenone is not due to the enolisability of the latter, but rather to the electron-deficient character of the keto group of trifluoroacetophenone.

Run	Carbonyl compd	Solvent	Reaction temp. $(^{\circ}C)$	Reaction time(h)	Conv. $(\mathcal{K})^{\mathsf{D}}$	Product	Yield $(\%)^{\mathsf{c}}$
	PhC(O)CH ₃	THF	25	24	\leq 5	PhCHOHCH ₃	≤ 5
$\overline{2}$	PhC(O)CH ₃	THF	50	24	\leq 5	PhCHOHCH ₂	\leq 5
\mathbf{a}	PhC(O)CH ₃	MeOH	50	24	\leq 5	PhCHOHCH ₃	≤ 5
$\overline{\mathbf{4}}$	PhC(O)CF ₃	THF	25	24	36	PhCHOHCF ₃	36
5	PhC(O)CF ₃	THF	25	96	60	PhCHOHCF ₃	60
6	PhC(O)CF ₃	MeOH	25	24	80	PhCHOHCF ₃	80
7 ^d	PhC(O)CF ₃	MeOH	50	4	100	PhCHOHCF ₃	97(85)

Table 1: Reaction of KHFe(CO)₄ with acetophenone and trifluoroacetophenone^a

* reaction conditions: KHFe(CO)4: 2.5 mmol; MeOH or THF: 15 mL; carbonyl compound: 2 mmol, under argon. b determined by GC analysis. c determined by GC analysis; isolated yields in parentheses. d reaction conditions:</sup></sup></sup> KHFe(CO)₄: 11 mmol; MeOH: 30 mL; carbonyl compound: 10 mmol, under argon.

To illustrate further the selective character of the reducing reagent, competitive experiments were conducted with a mixture of acetophenone and trifluoroacetophenone (1 equiv. of each vs KHFe(CO)_A). As expected, trifluoroacetophenone is reduced within 5h whereas acetophenone is not reduced at all.

Non-enolisable, electron-deficient difunctional ketones such as benzil, methyl benzoylformate and Nmethylisatine are selectively reduced by KHFe(CO)₄ (Table 2). The resulting α -hydroxycarbonyl derivatives can be isolated in good to high yield. In the case of methyl benzoylformate (run 9), a significant amount of benzaldehyde is also formed. This side-reaction is tentatively attributed to the in situ formation of $[PhC(O)Fe(CO)_d]$, which is known to give benzaldehyde on protonation.¹³ Although a longer reaction time is needed to ensure complete conversion, N-methyldioxindole can be isolated in high yield from N-methylisatine using KHFe(CO)_{Λ} as reducing agent (run 10). The carbonyl group of methyl pyruvate is both enolisable and electron-deficient. Methyl lactate is formed from this compound in high yield (run 11, as determined by GC), showing that even enolisable ketones may be reduced by KHFe(CO)₄ as long as they are sufficiently activated.

Run	Carbonyl compd	Reaction time(h)	Conv. (%)	Product	Yield (%)
8	PhC(O)C(O)Ph	4	100 ^b	PhCHOHC(O)Ph	$100b$ (93)
9	PhC(O)C(O)OMe	4	100°	PhCHOHC(O)OMe PhCHO ^d	70° (65) 30
10	ะ∩ `Me	24	100 ^b	OН ⊏റ `Mc	100^b (90)
11	MeC(O)C(O)OMe	6	100°	MeCHOHC(O)OMe ^{d.e}	90°

Table 2: Reaction of KHFe(CO)₄ with α -ketocarbonyl compounds^a

reaction conditions: KHFe(CO)₄: 11 mmol; MeOH: 30 mL; carbonyl compound: 10 mmol, 50°C, under argon. b determined by ¹H NMR. c determined by GC analysis ; isolated yield in parentheses. d identified by GC-MS analysis by comparison with an authentic sample.⁶ an unidentified side-product was also detected by GC.

KHFe(CO)₄ thus appears to be a very selective reagent for the reduction of electron-deficient carbonyl groups under mild conditions. Its chemoselectivity is all the more impressive in light of the fact that, under the conditions used, KHFe(CO)₄ tolerates ester, nitrile, aromatic bromide and chloride, secondary aliphatic chloride, aliphatic aldehyde and ketone functionalities.^{7,14}

As part of our study of ligand exchange processes on $[HE(CO)₄]⁻,^{15,16}$ we have recently reported the easy synthesis of $[HFe(CO)_{3} (P(OMe)_{3})]$ (potassium or "PPN" salt).¹⁵ We have compared the reactivity of $K^+ [HFc(CO)_3 [P(OME)_3]]$ with that of $K^+ [HFc(CO)_4]$ towards the reduction of an electron-deficient ketone, trifluoroacetophenone (Table 3).

Run	Iron complex	Reaction temp. (°C)	Reaction time (h)	Conv. $(\%)^{\text{b}}$	Yield $(\%)^{\text{b}}$
12 ²	KHFe(CO) ₄	25	24	85	81
13	$KHFe(CO)_{3} \{P(OMe)_{3}\}$	25	24	100	98
14	KHFe(CO) ₄	50	4	100	97
15	$KHFe(CO)_{3} \{P(OMe)_{3}\}$	50	4	100	98

Table 3: Reaction of KHFe(CO)₄ and KHFe(CO)₃{P(OMe)₃}
with trifluoroacetophenone⁴

^a iron complex : 2.5 mmol; MeOH: 10 mL; carbonyl compound: 2 mmol, under argon. determined by GC analysis

As expected, given the lower π -accepting properties of the trimethylphosphite ligand (νs carbon monoxide), K⁺[HFe(CO)₃{P(OMe)₃}]⁻ exhibits a slightly higher reactivity than K⁺[HFe(CO)₄]⁻ towards trifluoroacetophenone at 25°C (compare nms 12 and 13). Furthermore, this new reagent is thermally stable, with no decomposition occurring in reactions at 50° C (run 15).

We are currently examining the possible extension of this work to include the enantioselective reduction of electron-deficient carbonyl compounds using chiral $M^{+}[HFe(CO)_{4n}L_{n}^{*}]^{-}$ derivatives.

Acknowledgment

The authors wish to thank Dr L. Rosenberg both for helpful discussions and for **her editorial assistance.**

References

- Paderes, G-D.; Metivier, P.; Jorgensen, W.L.. J. Org. *Chem,* **1991.56, 4718-4733.** $\mathbf{1}$
- Brown, H.C.; Park, W.S.; Cho, B.T ;_ Ramachandran, P.V. .I. *Org. Chem,* **1987, 52, 5406-5412.** $\overline{2}$
- **See** for example: a) Chauvin, R.. *Tetrahedron: Asymmetry, 1990, 1, 737-742.* b) Kagan, H.B.; Tahar, 3 M.; Fiaud. J.C.. *Tetrahedron Leti,* **199 1,** 42, 5959-5962. c) Corey. E.J.; Cheng, X-M.; Cimprich, K.A.; Sarshar, S., *TetrahedronLeft..* **1991,** *47, 68356838.* **d)** Roucoux, A.; Agbossou, F.; Mortreux, A.; Petit, F., *Tetrahedron: Asymmetry*, 1993, 4, 2279-2282.
- **4** For a review on tetracarbonylhydridoferrates, see Brunet. J.J., *Chem. Rev.,* 1990, 90, 1041-1059.
- **5** a) Brunet. J.J.; Kindela, F.B.; Neibecker, D.. Synth. Comm., 1989, 19. 1923-1928. b) Brunet. J.J.: Taillefer, M., J. *Organomet. Chem,* **1989,** 361, Cl-C5. c) Brunet, J.J.; Taillefer, **M., .I.** *Organomet. Chem., 1990, 384, 193-197. d) Brunet, J.J.; Passelaigue, E., Organometallics, 1990, 9, 1711-1713. c)* Brunet, J.J.; Neibecker, D.; Srivastava, R.S.. *Tetrahedron Ltt..* **1993,** 34. 2759-2762.
- **6** Noyori, R.; Umeda, I.; Ishigami, T., J. *Org. Chem,* **1972, 73, 1542-1545.**
- **7** Alper, H., *Tetrahedron Lett.*, 1975, 2257-2260.
- **8** Massoudi, R.; Kim. J.H.; King, R.B.; King, A.D., J. *Am. Chem Sot.,* **1987, 109, 7428-7433.**
- **9** Marko, L.; Radhi, M.A.; Ötvös, I., *J. Organomet. Chem.*, 1981, 218, 369-376.
- **10** Gaus. P.L.; Gerritz, S.W.; Jeffries. P.M., *Tetrahedron L&L,* **1988,** 29, 5083-5086.
- 11 All manipulations and reactions involving pentacarbonyliron and its derivatives must be conducted in a well-ventilated hood.
- 12 Pearson, R.G.; Mauermann, H., *J. Am. Chem. Soc.*, 1982, 104, 500-504.
- 13 Cooke, M.P., *J. Am. Chem. Sot.,* **1970, 92, 6080-6082.**
- 14 Brunet, J.J.; Taillefer, M., *J. Organomet. Chem,* **1988,** 348, C5-CI.
- 15 Brunet, J.J.; Commenges, G.; Kindela, F.B.; Neibecker, D.. *Organometallics, 1992, II, 1343-1350.*
- 16 Brunet, J.J.; Commenges, G.; Kindela, F.B.; Neibecker, D., *Organometallics,* **1992, II, 3023-3030.**

(Received in France 25 July 1994; accepted 28 September 1994)