0040-4039(94)01955-X

Potassium Tetracarbonylhydridoferrate : A Reagent for the Selective Reduction of Carbonyl Groups

Jean-Jacques Brunet*, Remi Chauvin, Fadjai Kindela and Denis Neibecker

Laboratoire de Chimie de Coordination du CNRS, Unité N°8241, Université Paul Sabatier et Institut National Polytechnique, 205 route de Narbonne, 31077 Toulouse Cedex (France).

Abstract: KHFe(CO)₄ is an efficient reagent for the reduction of electron-deficient ketones (trifluoroacetophenone) and for the selective mono-reduction of the keto group of α -ketocarbonyl compounds such as benzil, methyl benzoylformate, N-methylisatine and methyl pyruvate. The phosphite substituted derivative K[HFe(CO)₃{P(OMe)₃}] is also an efficient reagent for the reduction of trifluoroacetophenone.

Key words: Potassium tetracarbonylhydridoferrate; ketones; 1,2-dicarbonyl compounds; selective reduction.

Selective reduction of polycarbonyl compounds is a challenging research area in organic synthesis. Whereas hydride donors such as $LiAlH_4$, B_2H_6 , or AlH_3 react with most sterically unhindered unsaturated functional groups (ketones, as well as esters, alkenes, alkynes, nitriles),¹ milder hydride donors can react selectively with electron-deficient keto groups.² These "activated" keto groups are found in such compounds as trifluoromethylketones, α -diketones, α -ketoesters or α -ketoamides, and have been often used as reference substrates for testing potentially enantioselective reducing agents.³

For the past few years, we have been investigating the reactivity of tetracarbonylhydridoferrates $M^{+}[HFe(CO)_{4}]^{-}$ with the goal of developing useful applications in organic synthesis.^{4,5} These reagents are among the least hydridic of the anionic transition metal hydrides and have long been known to react with carbonyl groups only under particular conditions. Indeed, α , β -unsaturated carbonyl compounds are successfully reduced by NaHFe(CO)₄ to saturated carbonyl derivatives without being reduced further to alcohols.⁶ In fact, NaHFe(CO)₄ does not reduce aldehydes nor ketones.⁷ However, when associated with $[R_3NH]^+[HFe(CO)_4]^-$ does reduce aldehydes (as in the Reppe alcohol synthesis)⁸ under conditions where acetone is not reduced.⁹ The reduction of acetone by these reagents occurs only under severe conditions (100 °C, 100 bar carbon monoxide) using a catalyst generated *in situ* from Fe(CO)₅ and Et₃N and believed to be $[Et_3NH]^+[HFe(CO)_4]^-$.⁹ More recently, aliphatic aldehydes and ketones have been reduced by [PPN]⁺[HFe(CO)₄]⁻ ([PPN]⁺ = bis(triphenylphosphine)iminium) associated with CF₃CO₂H in THF.¹⁰ We now wish to report that the potassium salt of [HFe(CO)₄]⁻ reacts under neutral, mild conditions with sufficiently activated carbonyl groups to yield the corresponding alcohols.

Preliminary experiments were carried out to compare the reactivity of $KHFe(CO)_4$ towards acetophenone with its reactivity towards trifluoroacetophenone (Table 1).¹¹ Trifluoroacetophenonone is reduced by $KHFe(CO)_4$

in either THF or methanol, the reaction being much faster and quantitative when conducted in MeOH. Analytically pure 1-phenyl-2,2,2-trifluoroethanol can be isolated from the reaction in 85% yield (run 7). In contrast, the stoichiometric reaction of acetophenone with KHFe(CO)₄ results in less than 5% conversion, with either THF or MeOH as solvent (runs 1-3). IR analysis of the reaction medium after 24h at 50°C indicates that KHFe(CO)₄ is unchanged; thus no enolisation of acetophenone is occurring. (This would generate the unstable $H_2Fe(CO)_4$, which decomposes readily.)¹² Under the same conditions, neither 2'-fluoroacetophenone nor 2',4'difluoroacetophenone is reduced. Thus, the difference in reactivity between trifluoroacetophenone and acetophenone is not due to the enolisability of the latter, but rather to the electron-deficient character of the keto group of trifluoroacetophenone.

Run	Carbonyl compd	Solvent	Reaction temp. (°C)	Reaction time (h)	Conv. (%) ^b	Product	Yield (%) ^c
1	PhC(O)CH ₃	THF	25	24	< 5	PhCHOHCH ₃	< 5
2	PhC(O)CH ₃	THF	50	24	< 5	PhCHOHCH ₃	< 5
3	PhC(O)CH ₃	MeOH	50	24	< 5	PhCHOHCH ₃	< 5
4	PhC(O)CF ₃	THF	25	24	36	PhCHOHCF ₃	36
5	PhC(O)CF ₃	THF	25	96	60	PhCHOHCF ₃	60
6	PhC(O)CF3	MeOH	25	24	80	PhCHOHCF ₃	80
7 ^d	PhC(O)CF ₃	MeOH	50	4	100	PhCHOHCF ₃	97 (85)

Table 1: Reaction of KHFe(CO)₄ with acetophenone and trifluoroacetophenone^a

^a reaction conditions: KHFe(CO)₄ : 2.5 mmol; MeOH or THF: 15 mL; carbonyl compound: 2 mmol, under argon. ^b determined by GC analysis. ^c determined by GC analysis; isolated yields in parentheses. ^d reaction conditions: KHFe(CO)₄ : 11 mmol; MeOH : 30 mL; carbonyl compound: 10 mmol, under argon.

To illustrate further the selective character of the reducing reagent, competitive experiments were conducted with a mixture of acetophenone and trifluoroacetophenone (1 equiv. of each vs KHFe(CO)₄). As expected, trifluoroacetophenone is reduced within 5h whereas acetophenone is not reduced at all.

Non-enolisable, electron-deficient difunctional ketones such as benzil, methyl benzoylformate and Nmethylisatine are selectively reduced by KHFe(CO)₄ (Table 2). The resulting α -hydroxycarbonyl derivatives can be isolated in good to high yield. In the case of methyl benzoylformate (run 9), a significant amount of benzaldehyde is also formed. This side-reaction is tentatively attributed to the *in situ* formation of [PhC(O)Fe(CO)₄]⁻, which is known to give benzaldehyde on protonation.¹³ Although a longer reaction time is needed to ensure complete conversion, N-methyldioxindole can be isolated in high yield from N-methylisatine using KHFe(CO)₄ as reducing agent (run 10). The carbonyl group of methyl pyruvate is both enolisable and electron-deficient. Methyl lactate is formed from this compound in high yield (run 11, as determined by GC), showing that even enolisable ketones may be reduced by KHFe(CO)₄ as long as they are sufficiently activated.

Run	Carbonyl compd	Reaction time (h)	Conv. (%)	Product	Yield (%)
8	PhC(O)C(O)Ph	4	100 ^b	PhCHOHC(O)Ph	100 ^b (93)
9	PhC(O)C(O)OMe	4	100 ^c	PhCHOHC(O)OMe PhCHO ^d	70 ^c (65) 30
10		24	100 ^b		100 ^b (90)
11	MeC(O)C(O)OMe	6	100 ^c	McCHOHC(O)OMe d.e	90°

Table 2: Reaction of KHFe(CO)₄ with α -ketocarbonyl compounds^{*}

^a reaction conditions; KHFe(CO)₄ : 11 mmol; MeOH: 30 mL; carbonyl compound: 10 mmol, 50°C, under argon.
 ^b determined by ¹H NMR. ^c determined by GC analysis ; isolated yield in parentheses. ^d identified by GC-MS analysis by comparison with an authentic sample.^e an unidentified side-product was also detected by GC.

 $KHFe(CO)_4$ thus appears to be a very selective reagent for the reduction of electron-deficient carbonyl groups under mild conditions. Its chemoselectivity is all the more impressive in light of the fact that, under the conditions used, $KHFe(CO)_4$ tolerates ester, nitrile, aromatic bromide and chloride, secondary aliphatic chloride, aliphatic aldehyde and ketone functionalities.^{7,14}

As part of our study of ligand exchange processes on $[HFe(CO)_4]^{-15,16}$ we have recently reported the easy synthesis of $[HFe(CO)_3{P(OMe)_3}]^{-16}$ (potassium or "PPN" salt).¹⁵ We have compared the reactivity of $K^+[HFe(CO)_3{P(OMe)_3}]^{-16}$ with that of $K^+[HFe(CO)_4]^{-16}$ towards the reduction of an electron-deficient ketone, trifluoroacetophenone (Table 3).

Run	Iron complex	Reaction temp. (°C)	Reaction time (h)	Conv. (%) ^b	Yield (%) ^b
12	KHFe(CO) ₄	25	24	85	81
13	KHFe(CO) ₃ {P(OMe) ₃ }	25	24	100	98
14	KHFe(CO) ₄	50	4	100	97
15	KHFe(CO) ₃ {P(OMe) ₃ }	50	4	100	98

Table 3: Reaction of KHFe(CO)₄ and KHFe(CO)₃{P(OMe)₃} with trifluoroacetophenone^a

^a iron complex : 2.5 mmol; MeOH: 10 mL; carbonyl compound: 2 mmol, under argon.^b determined by GC analysis

As expected, given the lower π -accepting properties of the trimethylphosphite ligand (vs carbon monoxide), K⁺[HFe(CO)₃{P(OMe)₃}]⁻ exhibits a slightly higher reactivity than K⁺[HFe(CO)₄]⁻ towards trifluoroacetophenone at 25°C (compare runs 12 and 13). Furthermore, this new reagent is thermally stable, with no decomposition occurring in reactions at 50°C (run 15).

We are currently examining the possible extension of this work to include the enantioselective reduction of electron-deficient carbonyl compounds using chiral $M^+[HFe(CO)_{4-n}L_n^*]^-$ derivatives.

Acknowledgment

The authors wish to thank Dr L. Rosenberg both for helpful discussions and for her editorial assistance.

References

- 1 Paderes, G.D.; Metivier, P.; Jorgensen, W.L., J. Org. Chem., 1991, 56, 4718-4733.
- 2 Brown, H.C.; Park, W.S.; Cho, B.T ;. Ramachandran, P.V , J. Org. Chem., 1987, 52, 5406-5412.
- See for example: a) Chauvin, R., *Tetrahedron: Asymmetry*, **1990**, *1*, 737-742. b) Kagan, H.B.; Tahar,
 M.; Fiaud, J.C., *Tetrahedron Lett.*, **1991**, *42*, 5959-5962. c) Corey, E.J.; Cheng, X.M.; Cimprich, K.A.;
 Sarshar, S., *Tetrahedron Lett.*, **1991**, *47*, 6835-6838. d) Roucoux, A.; Agbossou, F.; Mortreux, A.;
 Petit, F., *Tetrahedron: Asymmetry*, **1993**, *4*, 2279-2282.
- 4 For a review on tetracarbonylhydridoferrates, see Brunet, J.J., Chem. Rev., 1990, 90, 1041-1059.
- a) Brunet, J.J.; Kindela, F.B.; Neibecker, D., Synth. Comm., 1989, 19, 1923-1928. b) Brunet, J.J.;
 Taillefer, M., J. Organomet. Chem., 1989, 361, C1-C5. c) Brunet, J.J.; Taillefer, M., J. Organomet.
 Chem., 1990, 384, 193-197. d) Brunet, J.J.; Passelaigue, E., Organometallics, 1990, 9, 1711-1713. e)
 Brunet, J.J.; Neibecker, D.; Srivastava, R.S., Tetrahedron Lett., 1993, 34, 2759-2762.
- 6 Noyori, R.; Umeda, I.; Ishigami, T., J. Org. Chem., 1972, 73, 1542-1545.
- 7 Alper, H., Tetrahedron Lett., 1975, 2257-2260.
- 8 Massoudi, R.; Kim, J.H.; King, R.B.; King, A.D., J. Am. Chem. Soc., 1987, 109, 7428-7433.
- 9 Marko, L.; Radhi, M.A.; Ötvös, I., J. Organomet. Chem., 1981, 218, 369-376.
- 10 Gaus, P.L.; Gerritz, S.W.; Jeffries, P.M., Tetrahedron Lett., 1988, 29, 5083-5086.
- 11 All manipulations and reactions involving pentacarbonyliron and its derivatives must be conducted in a well-ventilated hood.
- 12 Pearson, R.G.; Mauermann, H., J. Am. Chem. Soc., 1982, 104, 500-504.
- 13 Cooke, M.P., J. Am. Chem. Soc., 1970, 92, 6080-6082.
- 14 Brunet, J.J.; Taillefer, M., J. Organomet. Chem., 1988, 348, C5-C8.
- 15 Brunet, J.J.; Commenges, G.; Kindela, F.B.; Neibecker, D., Organometallics, 1992, 11, 1343-1350.
- 16 Brunet, J.J.; Commenges, G.; Kindela, F.B.; Neibecker, D., Organometallics, 1992, 11, 3023-3030.

(Received in France 25 July 1994; accepted 28 September 1994)